Exam on "Functional Properties: Magnetism"

Lecturer: Graeme Blake

Friday January 26, 2018 Martini Plaza (half of the 09.00 – 12.00 time slot)

Exam drafted by Graeme Blake, exam reviewed by Caspar van der Wal

Name:

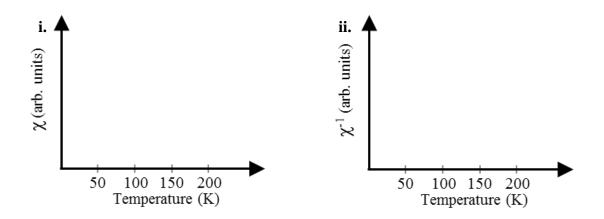
Student Number:

This exam paper contains 3 questions on 6 pages. Please answer on the back of the page if you need more space. A periodic table is supplied at the end of the paper (page 7).

For administrative purposes; do NOT fill the table

	Maximum points	Points scored
Question 1	10	
Question 2	14	
Question 3	11	
Homework	1 point of final score	
Total		

The exam grade for the magnetism part is calculated as $1 + 9 \times$ (exam points/35). The final grade for the magnetism part is (exam grade) + (homework grade).


Final grade: _____

_ Student number:___

Question 1 (10 points)

a. i. On the left-hand plot below, draw a typical magnetic susceptibility versus temperature curve for a *ferromagnet* with $T_C = 100$ K. (2 points)

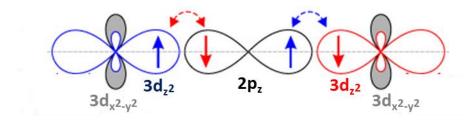
ii. On the right-hand plot below, draw a typical *inverse* magnetic susceptibility versus temperature curve for an *antiferromagnet* with $T_N = 50$ K. (2 points)

b. Propose a suitable order parameter for a paramagnetic to antiferromagnetic phase transition and explain why this order parameter is suitable. (2 points)

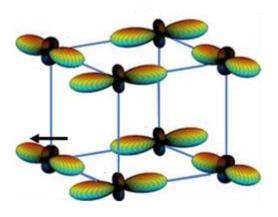
c. Describe how the effective magnetic moment in the *paramagnetic* temperature region (above the ordering temperature of the ferromagnet or antiferromagnet) can be experimentally determined. (2 points)

Name: _

d. LaBaNiO₄, in which Ni³⁺ (3d⁷) is octahedrally coordinated by oxygen, is a paramagnetic insulator. The effective magnetic moment of Ni is $\mu_{eff} = 1.75 \ \mu_B$ at 100 K but $\mu_{eff} = 3.90 \ \mu_B$ at room temperature. Give a possible explanation for these different values. (2 points)


Question 2 (14 points)

a. i. Using Hund's rules, determine the ground state of the Sm³⁺ cation (electronic configuration $4f^5$). (2 points)


ii. Calculate the effective magnetic moment of ground-state Sm³⁺. (The Landé g-value for Sm³⁺ is $g_J = 2/7$.) (2 points)

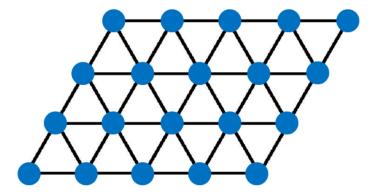
iii. The measured effective moment of Sm^{3+} is $\mu_{\text{eff}} = 1.74 \ \mu_{\text{B}}$. Does this agree with your calculated value? Comment on your answer. (2 points)

c. Consider a metal oxide in which neighbouring transition metal atoms, both octahedrally coordinated by oxygen, each contain one unpaired electron in the $3d_{z^2}$ orbital. Superexchange can take place via the $2p_z$ orbital of a bridging oxygen atom in the geometry shown schematically below. Explain why superexchange in this geometry is antiferromagnetic. (2 points)

d. LaMnO₃ possesses one unpaired electron in its manganese $3d_{z^2}$ orbital. These orbitals order spatially as shown in the picture below. Explain briefly why this happens. (Here Mn³⁺ has electron configuration $3d^4$ and manganese is octahedrally coordinated by oxygen.) (2 points)

e. The spin associated with one Mn^{3+} cation in LaMnO₃ is shown by the arrow (lower left on the diagram above). Indicate on the picture the directions of the other spins. Is the overall spin ordering in LaMnO₃ ferromagnetic or antiferromagnetic? (2 points)

f. LaMnO₃ is an insulator. When more than 20% of the trivalent La^{3+} in LaMnO₃ is replaced by divalent Sr^{2+} , the material becomes metallic. Suggest why. (2 points)


Question 3 (11 points)

a. When a ferromagnetic material is cooled down through its Curie temperature in the absence of an applied magnetic field, it forms ferromagnetic domains. Explain why these domains spontaneously form. (2 points)

b. Sketch a typical magnetization versus applied magnetic field loop for a soft ferromagnet and a hard ferromagnet. Give an example of an application for each type of ferromagnet and explain briefly why its properties are suitable for that application. (4 points)

c. Ferromagnetic nickel has a cubic crystal structure with lattice constant 3.524 Å. There are 0.6 spins per atom in the ferromagnetic state, the exchange constant *J* is equal to k_BT_C where $T_C = 627$ K, and the easy axis anisotropy is $K = -0.5 \times 10^4$ J/m³. Calculate the domain wall thickness (assume Bloch walls). (2 points) (Note: $k_B = 1.381 \times 10^{-23}$ J/K)

d. YbMgGaO₄ is an insulator and has a crystal structure in which the magnetic Yb³⁺ cations (S = $\frac{1}{2}$) are arranged in two-dimensional layers with a triangular pattern as shown below by the blue circles. The sign of J for the exchange interaction between neighbouring Yb³⁺ cations is negative (antiferromagnetic). Discuss what the magnetic properties of YbMgGaO₄ might be and whether you would expect long-range magnetic ordering to occur in this compound. How could you test your prediction experimentally? (3 points)

1	Periodic Table of the Elements													18			
1 H Hydrogen																	² He Helium
1.01	2											13	14	15	16	17	4.00
³ Li Lithium 6.94	4 Beryllium 9.01											5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 Oxygen 16.00	9 F Fluorine 19.00	10 Neon 20.18
11 Na Sodium 22.99	12 Mg Magnestum 24.31	3	4	5	6	7	8	9	10	11	12	13 Aluminum 26.98	14 Silicon 28.09	15 P Phosphorus 30.97	16 Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.88	23 V Vanadium 50.94	24 Cr Chromium 51.99	25 Mn Manganese 54.94	26 Fe 100 55.93	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 CU Copper 63.55	30 Zn 2inc 65.39	Gallium 69.73	32 Germanium 72.61	33 Arsenkc 74.92	34 Se Selenium 78,09	35 Br Bromine 79.90	36 Kr Krypton 84.80
37 Rb Rubidium 84.49	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr ^{Zirconium} 91.22	41 Nb Nioblum 92.91	42 Mo Molybdenum 95,94	43 Tc Technetium 98.91	44 Ru Rutheniur 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42		48 Cd Cadmium 112.41		50 Sn 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127,6	53 lodine 126.90	54 Xenon 131.29
55 Cs Cesium 132.91	56 Ba Barium 137.33	57-71 Lanthanides	72 Hf Hafnium 178,49	73 Ta Tantalum 180.95	74 W Tungsten 183.85	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 1 Iridium 192.22	78 Pt Platinum 195.08		80 Hg Mercity 200.59	Thallium	82 Pb Lead 207.20	83 Bismuth 208.98	84 Po Polonium [208.98]	85 At Astatine 209.98	86 Rn Radon 222.02
87 Fr Francium 223.02	88 Ra Radium 226.03	89-103 Actinides	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hassium [269]	109 Mt Meitneriur [268]	110 Ds Dermitadia [269]	noentgativ (272)	112 Cn Coperniciu [277]	III3 Unut Ununtrium unknown	Flerovium	115 UUD Ununperstar unknowr	Livermorium		
		-															
			La	Ce	Pr	Nd	Pm	Samarium	EU Europium	Gadolinium	Tb Terbium	66 Dy Dysprosium	Holmium	Er Erbium	Tm	Yb Ytterbium	LU
		8		140.12			144.91	150.36	151.97 95	157.25 96	158.93 97	162.50 98	164.93	167.26	168.93	173.04	174.97
			Actinium	Th	Pa	Uranium H	Np lepturium 237.05	Ρu	Am Americium 243.06	Cm Curium 247.07	Bk Berkelium 247.07	Cf	Es	Fm	Md	No	Lr awrencium [262]
	C	Alkali Metal	Alkaine	Earth Tr	iansition Metal	Basic M	letal	Semimetal	Nonn	netal	Halogen	Noble	ias La	anthanide	Actinid	•	02016 Tadd Heinenstine aclencencies.org